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We consider extended Pirogov–Sinai models including lattice and continuum
particle systems with Kac potentials. Call l an intensive variable conjugate to an
extensive quantity a appearing in the Hamiltonian via the additive term −la.
We suppose that a Pirogov–Sinai phase transition with order parameter a

occurs at l=0, and that there are two distinct classes of DLR measures, the
plus and the minus DLR measures, with the expectation of a respectively posi-
tive and negative in the two classes. We then prove that l=0 is the only point
in an interval I of values of l centered at 0 where this occurs, namely the
expected value of a is positive, respectively negative, in all translational invari-
ant DLR measures at {l > 0} X I and {l < 0} X I.

KEY WORDS: Pirogov–Sinai; Gibbs phase rule; contours; Peierls estimates;
phase transitions.

1. INTRODUCTION

‘‘In the abstract space of all potentials, phase transitions are an exception.’’
This statement by Ruelle in his classical textbook, (10) suggests the validity
of the Gibbs phase rule, but the notion must be accepted only very cau-
tiously, as remarked by van Enter, (5, 14) and then by Sokal and Israel; (7, 13)

anyway a complete proof of the Gibbs rule would require to show that in
the space of the few thermodynamically relevant parameters, phase transi-
tions occur on regular manifolds of positive co-dimension. But, as stated
again by Ruelle in a recent review on open problems in mathematical



physics, (11) the proof of such a statement must be regarded as one of the
main challenges in statistical mechanics.

In the Pirogov–Sinai regime where configurations can be described by
contours which satisfy Peierls conditions, the situation is definitely better,
as the theory provides tools for a very detailed knowledge on the structure
of Gibbs measures in a region in the relevant parameters space; see for
instance Sinai’s book on phase transitions. (12) The traditional Pirogov–Sinai
theory is a low temperature expansion which enables to control the entro-
pic fluctuations from the ground states, its natural setup being the lattice
systems. But the theory is not limited to such cases and it has been applied
to a great variety of situations, covering various types of phase transitions.
We just mention here the case of Kac potentials, which are seen as a per-
turbation of mean field, where the small parameter is the inverse inter-
action range of a Kac potential. According to van der Waals, the theory
becomes then well suited for investigating the liquid-vapor branch of the
phase diagram and, as shown in ref. 9, its applications are not restricted to
lattice models, (2, 4) but continuum particle systems can be treated as well.

All the above cases have a common structure. There is a term in the
Hamiltonian of the form −la, where a is an extensive quantity and l ¥ R
is its conjugate variable: in the case of spins l is an external magnetic field
and a the spin magnetization; for particles, l is the chemical potential and
a the particles number. Our main assumption is that at a value, say l=0,
of the intensive parameter there is phase coexistence with a an order
parameter, and that defining contours in terms of the variable a, the
contours satisfy the Peierls bounds with suitable coefficients. Under this
assumption the process described in terms of the variable a has the typical
features of a low temperature Ising model. We will thus have a class of
‘‘plus’’ measures where a is typically positive (as well as its expectation) and
a class of ‘‘minus’’ measures with a typically negative. We are talking of
classes of plus and minus measures and not just of plus and minus mea-
sures, because we are not ruling out the possibility of other phase transi-
tions, described by other order parameters. As a trivial example, just take
the direct product with an Ising model which has a phase transition, thus
doubling the extremal DLR measures. In conclusion our assumption
implies that at l=0 there are two distinct classes of DLR measures, the
plus and minus ones, for which the expected value of a is positive, respec-
tively negative, and which are obtained by thermodynamic limits with plus,
respectively minus, boundary conditions. Under this assumption (plus
some technical conditions of super-stability type if the variables are
unbounded) we prove that there is a finite interval I of values of l,
centered at l=0, where coexistence occurs only at l=0. More precisely, if
l > 0 (or l < 0) and in I, then any translational invariant DLR measure
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has positive (negative) expectation, and both plus and minus boundary
conditions produce in the thermodynamic limit the same class of states.

The proof does not need to specify the precise structure of a, nor the
precise definition of contours and it covers in a unified way both pertur-
bations of ground states and Kac potentials. The proof is truly simple, at
least we hope, and it avoids the traditional requirements about the struc-
ture of the restricted ensembles free energies, which in the applications
are not always easy to verify. A more detailed (and maybe more model
dependent) analysis is needed if we want to investigate finer questions as
differentiability or analytic continuation. As shown recently by Friedli and
Pfister, (6) also for such questions the analysis extends from the traditional
setup of the Pirogov–Sinai regime to models with Kac potentials.

In Section 2 we specify the setup and state the main results. In Section 3
we recall the Peierls argument to prove the occurrence of a phase transition
at l=0. Section 4 is the most original part of the paper, we prove there
that if l is positive or negative, then, correspondingly, the plus or the minus
phases are stable, namely Peierls bounds hold true for the corresponding
contours. In Section 5, we complete the analysis by showing uniqueness. In
Section 6 we prove that the assumptions in Section 2 are verified in the
LMP model for phase transitions in the continuum.

2. MODEL AND MAIN RESULTS

State Space

After partitioning the physical space (Zd or Rd, d \ 2) into cells made
of cubes of side a (a a free parameter whose choice will be discussed later),
the system becomes a lattice model with a general single site state space Q.
In this way we will treat in a uniform way models on a lattice and in the
continuum. The main examples we have in mind are finite spins and point
particles:

Q :=˛{ − k,..., k}a
d

with

ê.

n=0 ((−a/2, a/2]d)n n ¥ N, a ¥ R+

A configuration is denoted by q :={qx}x ¥ Z
d, which is an element of the

phase space QZ
d
, qx being the configuration at x ¥ Zd. In the case of par-

ticles, qx :=(n; r1,..., rn) is the collection of positions of the particles which
are in the cell Cx. We equip the space QZ

d
with the product topology cor-

responding to the metric topology on Q, and we suppose that if Q is not
compact there is a nonnegative function |q| on Q such that for any t \ 0,
{|q| [ t} is a compact subset of Q. In the first case, we denote by |q| the
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a1-norm on Na
d

and in the second case, we define |q|=|(n, ri,..., rn)| — n to
be the number of particles in the configuration Q.

The space Q is equipped with an a priori measure n, which in the first
case is just the uniform measure on { − k,..., k}a

d
, an in the case of particles

is 1
n! times the Lebesgue measure on (−a/2, a/2]dn. We denote by nL(dqL)

the product measures <x ¥ L n(dqx).
In the sequel we will call two sites, x and y, connected if |x − y| [ 1,

thus in this paper connected sets are what is often called a connected sets.

Free Measure

We consider a fixed probability measure on Q (the counting measure
or the law of a Poisson process, in above examples). The free measure is
then the product measure n on QZ

d
. nL( · ) denotes the marginal of n(dq) on

QL for L … Zd.
The models we consider are defined by Hamiltonians obtained in the

usual way from interaction potentials. We will always assume translational
invariance, finite range and continuity of the potentials, which are then
bounded when Q is compact. In the non-compact case, we allow for
unbounded potentials, supposing they give rise to Gibbs measures m with
the property that the interactions remain almost surely bounded.

Unperturbed Hamiltonian and Contours

We fix a reference Hamiltonian H0 which incorporates the inverse
temperature b as a factor, so that H0 is dimensionless. We define H0 by
giving the family of its potentials {UD}, recalling that the energy of a con-
figuration qL in the finite region L in interaction with the configuration p in
the complement of L is given by the formula

H0(qL | pL
c) — C

D X L ] ”

UD(qL, pL
c)

where (qL, pL
c) is the configuration which agrees with qL and pL

c respec-
tively on L and Lc. We choose the cell length a in such a way that UD — 0
unless D is a translate of the cube |x| [ 1. Abusing notation we then write
Ux for the potential relative to the cube D with center at x. We then have

H0(qL | pL
c)= C

x: dist(x, L) [ 1
Ux((qL, pL

c)) (2.1)

We suppose that Ux(q) is a translation invariant function, i.e.,

Ux(q)=U0(yxq), (yxq)y=qx+y
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with U0(q) depending only on {qy, |y| [ 1}. The other assumptions on H0

will be stated later.
We are going to describe the configurations in terms of contours, and,

as we will see later, the validity of a Peierls condition for H0 will constitute
the main assumption on the Hamiltonian. By adjusting the choice of a,
contours are simply described in the following way. There is a single spin
function h(qx) with values in {0, ± 1}, so that the phase variable

G(q; x)= D
y: |y − x| [ 1

1h(qy)=1 − D
y: |y − x| [ 1

1h(qy)=−1 (2.2)

indicates the spatial distribution of phases: namely the regions {G(q; x)
=± 1} are respectively called the ± equilibrium regions, while the maximal
connected components of {G(q; x)=0}, denoted by sp(Ci), are the spatial
supports of the contours. A contour C is then the pair C=(sp(C), hC),
where hC is the restriction of h to sp(C).

In the sequel all configurations q that appear as boundary conditions
will be assumed to be such that the set of points x ¥ Zd where h(qx) ] 0 is
compact.

The Full Hamiltonian

The full Hamiltonian that we consider has the expression:

Hl(q)=H0(q)+lHI(q) (2.3)

where lHI is the perturbation and l the coupling strength. The main
examples we have in mind are when l is a magnetic field and −HI(q) the
magnetization density, and when l is the chemical potential while −HI(q)
is the particles density. More generally and analogously to (2.1) we set

HI(qL | pL
c)=−(ba

d) C
x: dist(x, L) [ 1

ax((qL, pL
c)) (2.4)

with ax(q)=a0(yxq) dependent only on qy, |y − x| [ 1 (after a proper
choice of the cell length a). Thus, in the above examples, ax(q) is respec-
tively the magnetization and the particles densities in the cell indexed by x.

The coefficient ba
d could be incorporated in l, but we prefer to have

the two quantities separated, to keep a connection with the original model,
before its representation in cells. We will suppose that ax(q) is bounded on
the sets {|qy | [ t, |y − x| [ 1} for any t \ 0. In particular ax(q) is bounded if
Q is compact.
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We will suppose that a is an order parameter for H0, namely that there
are a+ > a− so that

G(q; x)=± 1 2 |ax(q) − a±| [ z, z=
a+ − a−

10
(2.5)

(any other choice with z < (a+ − a− ) would work as well).

Gibbs and DLR Measures

The Gibbs measure m (p)
l, L(dq) on the finite region L … Zd with b.c. p is

given by

m (p)
l, L(dq) :=

e−Hl(qL | pLc)

Z (p)
l, L

nL(dqL) dpLc (dqL
c) (2.6)

The denominator Z (p)
l, L is the partition function.

Z (p)
l, L :=F nL(dqL) dpLc (dqL

c) e−Hl(qL | pLc) (2.7)

and

Hl(qL | pL
c)= C

x: dist(x, L) [ 1
(Ux((qL, pL

c)) − l(ba
d) ax((qL, pL

c)))

A DLR measure m(dq) is then defined by the local specifications m (p)
l, L(dq),

by requiring that the conditional probability of m(dq) on the s-algebra FL
c

generated by {qx, x ¥ Lc}, is m a.s. equal to m (p)
l, L(dq).

The ± Gibbs Measures

The configuration p is a ± boundary condition w.r.t. the finite region
L ˘ Zd, if h(px) — ± 1 for all x ¥ Lc such that dist(x, L) ¥ {1, 2}. Then the ±
finite volume, Gibbs measures m ( ± , p)

l, L are

m ( ± , p)
l, L (dq) :=

e−Hl(qL | pLc)

Z ( ± , p)
l, L

1{G(q, x)=± 1, dist(x, L)=1} nL(dqL) dpLc (dqL
c) (2.8)

where the partition function Z ( ± , p)
l, L is defined as the normalization factor

for m ( ± , p)
l, L (dq) to be a probability.
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The Peierls Condition
We will say that the Peierls condition holds with constant CP > 0,

P standing for Peierls, if for any finite region L, any ± boundary condition
p and any sequence C1,..., Cm of contours with sp(Ci) ˘ L,

m ( ± , p)
0, L (q: C1,..., Cm are contours of q) [ e−CP ; i |Ci | (2.9)

where we have denoted by |C| :=|sp(C)|.
Notice that the condition refers only to l=0. It will be used under the

assumption that CP is large: that is, CP larger than some universal, dimen-
sion dependent constant. Under such an assumption, (2.9) implies the
occurrence of a phase transition, as stated in Theorem 2.1.

The condition CP large is in general model dependent, and our point
here is that once and for whatever reason, the condition is checked to hold,
then all the properties we will state below are valid and can be applied.

In traditional Pirogov–Sinai models the condition that CP is large is
verified when b is large, while in the case of Kac potentials it follows from
assuming the scaling parameter c small. In both cases (ba

d) large is the
condition responsible for the largeness of CP. While CP diverges with (ba

d),
in general the ratio CP/(ba

d) is infinitesimal and the range of values of the
coupling constant l will be determined by the ratio:

d :=
CP

ba
d (2.10)

Temperedness Conditions
Let {Ei} parameters with values in ± 1, we denote by m ({Ei}, p)

l, L the
measure mp

l, L conditioned on {G( · ; x)=Ei on Ti X dist(x, L)=1} and
suppose that there are constants cn, c −

n, n ¥ N, so that

m ({Ei}, p)
l, L (|ax(q)|n) [ cn, for any x ¥ L (2.11)

m ({Ei}, p)
l, L (q: |qx | \ t) [ c −

nt−n, for any x ¥ L and t > 1 (2.12)

and call ‘‘tempered’’ a probability on QZ
d

such that, for some coefficient c −

n,

m(q: |qx | \ t) [ c −

nt−n, for any x ¥ Zd and t > 1 (2.13)

Large Deviations, Cut, and Paste Bounds
There is a positive function Cg(a), a > 0, divergent as a Q ., with the

following property. Let L be any finite region, {Ti} the maximal, connected
components of the complement of L, D any subset of L, then:

m ({Ei}, p)
l, L (|aD(q)| \ a |D|) [ e−(ba

d) Cg(a) |D|, aD= C
x ¥ D

ax (2.14)
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Notice that the above condition is automatically satisfied when Q is
compact and ax is bounded.

In Section 5 (when proving that plus and minus Gibbs states have
same thermodynamic limit), we will need the following cut and paste
bound, namely that there are a constant c > 0 and n > 0 so that the follow-
ing holds. Let D be a bounded region, t > 1, q̄ and p two configurations
such that, for any x, |q̄x | [ t and |px | [ t. Then, for E0=± 1,

Z (q̄)
l, D(|qx | [ t, x ¥ D)

Z (p)
l, D(h(qx)=E0, x ¥ D)

[ ec(ba
d) tn |D| (2.15)

where the argument of the partition function means that the partition
function is defined with the constraint indicated by the argument.

The bound (2.15) could be proved as a consequence of assumptions on
the interaction like

|Hl, D(qD | q̄D
c)|, |Hl, D(qD | pD

c)| [ CItn |D| (2.16)

(CI a suitable constant, proportional to b, while n is determined by the
form of the interaction: e.g., n=2 for pair interactions, n=4 in the LMP
model) and on assumptions on the free measure of the sets h=± 1:

F
h(qx)=E0

nx(dqx) \ e−ca
d

(2.17)

The Sets G±
l

For any bounded set L in Zd, we denote by G+
l, L the weak closure

of the family of measures which are convex combinations of the family
{m (+, pi)

l, L i
, L i ‹ L}. G−

l, L is defined analogously. Then, for any m ¥ G±
l, L,

m(q: |qx | \ t) [ c −

nt−n, for any x ¥ L and t > 1

(c −

n as in (2.12)). As a consequence, G±
l is weakly compact and since

G±
l, L ‹ G±

l, D, when D ‹ L

we conclude that

G+
l =Z G+

l, L, G−
l =Z G−

l, L

are both nonempty, weakly compact, convex sets of tempered DLR mea-
sures. Notice that G±

l , which are both nonempty, are however not neces-
sarily distinct. If this is the case, then indeed there is a phase transition,
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otherwise G+
l =G−

l . Take notice that this does not mean uniqueness of
DLR measures, as there could be several DLR measures in the plus and/or
minus phases.

We can now state our main theorem.

Theorem 2.1. There are dimensions dependent constants l̂, CP(d),
d \ 2, so that if CP \ CP(d), then:

• At l=0, G+
0 X G−

0 =” and if m ¥ G±
0 then, for all x, m(G( · ; x)

=± 1) > 1/2.

If, moreover, there is ag > 0 so that (ba
d) Cg(ag) > CP (in the sequel

we shorthand Cg=Cg(ag), the latter defined in (2.14)), then for suitable
constants C(d) > 0:

• If 0 < l [ lg=min{C(d) d2, l̂}, (resp. 0 > l \ − lg), any tempered
DLR measure m (see (2.13)) is in G+

l (resp. G−
l ) and, for all x, m(G( · ; x)

=1) > 1/2 (resp. m(G( · ; x)=−1) > 1/2).

Theorem 2.1 will be proved in the remaining sections, in particular the
statement at l=0 is proved in Section 3, while the statements at l ] 0 are
proved in Sections 4 and 5.

Theorem 2.1 proves uniqueness in a ‘‘small’’ interval of values of l, in
particular in the case of Kac potentials the interval becomes infinitesimal
as c Q 0, c the Kac scaling parameter, see Section 6 for the LMP model.
A different argument must be used for the larger l, which in many appli-
cations (including Kac potentials and traditional Pirogov–Sinai models)
is based on the fact that the double well structure (of the energy or of the
mean field free energy, for Kac potentials) at l=0 is unbalanced when
l ] 0. The one well case is in general ‘‘easy to treat’’ at least if the unbal-
ance between wells is not too small, i.e., if l is large enough. Thus our
theorem covers the dangerous case of the small perturbations. The extension
to larger l involves new assumptions on the structure of the Hamiltonian
and seems more model dependent. In separate papers some specific cases
will be treated.

3. PHASE TRANSITIONS AND THE PEIERLS ARGUMENT

In this section we will prove the statement of Theorem 2.1 about the
occurrence of a phase transition at l=0. The proof is nothing but the
classical Peierls argument and we report it mainly because it introduces
notions that will be used in the sequel.

On the Gibbs Phase Rule in the Pirogov–Sinai Regime 1243



Geometry of Contours

Given a contour C, we denote by ext(C) the unbounded maximal
connected component of sp(C)c. The contour is called a + [−] contour if
hC(x)=1 [resp. =−1] for all x such that dist(x, ext(C))=1. By defini-
tion of contours hC is constant on {x: dist(x, ext(C))=1} and different
from 0. We call int(C)=sp(C)c 0 ext(C), and distinguish int±(C) as the
union of all the maximal connected components of int(C) which are con-
nected to regions where hC is respectively ± 1. Finally we call

V(C)=sp(C) c int(C) (3.1)

Mass of Contours

The mass of a ± contour C relative to a probability m on QZ
d
, is

defined for all configurations p which are respectively ± b.c. relative to the
region V(C), as

m(C; p) :=m(q: C is a ± contour for q | FV(C)c;

{G(q; x)=± 1, dist(x, V(C))=1})(p) (3.2)

namely m(C; p) is the conditional probability computed at p of having the
contour C, given the s-algebra generated by the variables qx, x ¥ V(C)c

and given that {G(q; x)=± 1, dist(x, V(C))=1} .
If C is a ± contour and m=m ( ± , p)

l, V(C), we write its mass as ml(C; p),
namely

ml(C; p) :=m ( ± , p)
l, V(C)(q: C is a contour for q) (3.3)

which, sometimes, will be simply called ‘‘the mass of the contour C.’’
Notice that a different notion is often used in the literature, namely

that of ‘‘the weight of a contour,’’ which is defined in terms of a ratio of
two partition functions, one with the constraint of having a contour C and
the other one with the constraint that the contour C is absent.

Finally, m satisfies the Peierls condition relative to a class {C} of con-
tours and with constant C, if

m(C; p) [ e−C |C| for all contours C ¥ {C} and all p (3.4)

Lemma 3.1. If C is large enough, then

C
C: 0 ¥ V(C)

e−C |C| [ e−C (3.5)
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The proof starts from the observation that |C| \ 9 (in d=2 the
minimal contour consists of a site and those connected to it). Thus the sum
in (3.5) starts from sets with at least 9 sites. Since the number of contours
C whose support contains the origin with |C|=M is bounded by KM for
some finite constant K, we see that

C
C: 0 ¥ V(C)

e−C |C| [ C
.

M=9
KMe−CM [

(Ke−C)9

1 − Ke−C

which implies 3.5 if C is sufficiently large.

Proof of the Statement in Theorem 2.1 at l=0

Suppose the measures m ( ± , p)
0, L satisfy (3.4) with C > 1 and as large as

required by Lemma 3.1. Then, for any x ¥ L:

m ( ± , p)
0, L (|ax − a±| > z)=m ( ± , p)

0, L (x ¥ V(C), for some C) [ 1/e (3.6)

The inequality remains valid after convex combinations and weak limits,
proving that G±

0 are distinct.

Some Generalizations

In the next section we will use variants of the above argument which
are stated below. We will denote by m(f) the expectation of a function f,
relative to a measure m.

Lemma 3.2. Let m be supported by configurations q having
G(q; x)=E0, E0 ¥ { ± 1}, for all x ¥ Lc, L a bounded region. Then, if m

satisfies the Peierls bounds for all E0-contours with a constant C as large as
needed in Lemma 3.1, for any x ¥ L

m(|ax − aE0
|) [ z+e−C/2m(|ax − aE0

|2)1/2 (3.7)

m(|ax − aE0
| 1|ax − aE0

| > z) [ e−C/2m(|ax − aE0
|2)1/2 (3.8)

Proof. We partition the space into the sets |ax − aE0
| [ z and

|ax − aE0
| > z. The contribution to the expectation (3.7) of the first set is

bounded by z. All configurations in the support of m which belong to the
second set, have a E0-contour C with x ¥ V(C). We then use Cauchy–
Schwartz and (3.5) to prove (3.7) and (3.8). L
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4. STABILITY OF PHASES

In this section we will prove that for 0 < l [ lg,

ml(C; q) [ e−(CP/8) |C|, for any+contour C (4.1)

and that the analogous property holds for negative l and − contours.
By standard arguments and using the analysis of Section 3 (details are

omitted), it follows from (4.1) that for CP large enough, if l > 0 [l < 0],
then any measure in G+ [in G−] is supported by configurations q such that
the set {x: G(q, x)=1} [{x: G(q, x)=−1}] occupies most of the space.
The persistence of this property past l=0 is usually referred to as ‘‘a sta-
bility of the+(or −) phase ’’ under the perturbation of strength l.

To have lighter notation we restrict in the sequel to positive l, the
proofs for negative l being completely similar are omitted. (4.1) will follow
from showing that the typical configurations of m (−, p)

l, L have a layer close
to the boundary of L, where mostly G=−1, but after the layer typically
G=1. An improved control on the thickness of the layer and on the
absence of finger-like protuberances will prove in Section 5 that any
tempered DLR measure is in G+.

The key point is to show that G=−1 has a cost and that it is therefore
convenient to have a transition to G=1. The cost comes from the energy
−la(q) which would decrease from erasing the minus layer and thus
changing G=−1 into G=1. The problem comes from the entropic factor
due to the number of ways to realize the minus layer attached to the
boundary of L. If l is very small, such an entropic factor becomes too large
and the layer impossible to erase. We will fix the problem by not regarding
as being in the plus phase any region with G=1 whose volume is ‘‘too
small:’’ the entropy is then drastically reduced and under control. With this
in mind we introduce the notion of

‘‘Slim’’ and ‘‘Fat’’ Contours

Slim and fat contours are distinguished using the length scale

t− (l) :=l−1/2 (4.2)

recall that we are supposing l > 0 small and therefore t− (l) is a large
quantity. The choice of the power 1/2 in the above definition is to a large
extent arbitrary.

Definition 4.1. A contour C is called ‘‘l-slim’’ if

|V(C)| [ t− (l)d (4.3)
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where V(C) is defined in (3.1). A contour that is not l-slim is called
‘‘l-fat.’’ Similarly, a region L is called ‘‘l-fat’’ if it is a bounded region,
such that all the maximal connected components of Lc have volume larger
than t− (l)d.

Remark. When there is no risk of confusion, we will simply say
‘‘slim’’ and ‘‘fat’’ contours.

Proposition 4.2. For 0 < l [ lg the mass of any slim contour C is
bounded by

ml(C; q) [ e−(CP/2) |C| [ e−(CP/4) |C| − l(ba
d)(a+ − a− ) |V(C)| (4.4)

(the latter inequality will be used at the end of Section 5). The analogous
statement holds for −lg [ l < 0.

Proof. For notational simplicity we will refer to l positive and +
contours. We will denote by Z(A) a partition function with the constraint
that the configurations should belong to the set A. We then have for a +
contour C,

ml(C; p)=
Z (+, p)

l, V(C)(C is a contour)
Z (+, p)

l, V(C)

(4.5)

Then, by (2.14) and recalling the definition of ag in Theorem 2.1,

Z (+, p)
l, V(C)(C is a contour)

[ Z (+, p)
l, V(C)(C is a contour; |aV(C) | [ ag |V(C)|)+e−CP |C|Z (+, p)

l, V(C)

In the first partition function on the r.h.s. we want to replace l by 0, in
order to use the Peierls bounds valid by assumption at l=0. We have

Hl(qV(C) | qV(C)c) − H0(qV(C) | qV(C)c)=−l(ba
d) C

dist(x, V(C)) [ 1
ax(q)

On the other hand, due to the constraints in the partition function, we can
restrict to configurations q which agree with p on Lc, and such that both
|aV(C) | [ ag |V(C)| and G(q; x)=1 when dist(x, V(C))=1. Calling |a±|=
max{|a+|, |a− |}, we have

|Hl(qV(C) | qV(C)c) − H0(qV(C) | qV(C)c)| [ X

X :=|l|{(ba
d) ag |V(C)|+(2 |a±|)(2d) |C|}

(4.6)
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because the cardinality of {x: dist(x, V(C))=1} is bounded by 2d |C| and
|a+ ± z| [ 2 |a±|. Then

Z (+, p)
l, V(C)(C is a contour) [ eXZ (+, p)

0, V(C)(C is a contour)+e−CP |C|Z (+, p)
l, V(C)

[ eX − CP |C|Z (+, p)
0, V(C)+e−CP |C|Z (+, p)

l, V(C)

and, writing Z (+, p)
0, V(C) [ Z (+, p)

0, V(C)(|aV(C) | [ ag |V(C)|)+e−CP |C|Z (+, p)
0, V(C), we get

[
eX − CP |C|

1 − e−CP |C| Z (+, p)
0, V(C)(|aV(C) | [ ag |V(C)|)+e−CP |C|Z (+, p)

l, V(C)

[ 1 e2X − CP |C|

1 − e−CP |C|+e−CP |C|2 Z (+, p)
l, V(C)

[ 1e2X − CP |C|/2

1 − e−CP |C|+e−CP |C|/22 e−CP |C|/2Z (+, p)
l, V(C)

To bound the parameter X introduced in (4.6), we use an isoperimetric
inequality: there is cd > 0 such that

|V(C)| (d − 1)/d [ cd |C|, |V(C)| [ cd |C| t− (l) (4.7)

Then, recalling (2.10),

X [ ((CPd−1agcd) |lt− (l)|+(2 |a±|)(2d) |l|) |C|

By the choice of lg in Theorem 2.1, lt− (l) [ `lg [ d `C(d), so that the
first inequality in (4.4) follows for C(d) small enough and CP large enough.

To complete the proof of (4.4) we need to show that

l(ba
d)(a+ − a− ) |V(C)| [ (CP/4) |C| (4.8)

By (4.7),

l(ba
d)(a+ − a− ) |V(C)| [ l(ba

d)(a+ − a− ) cd |C| t− (l)

hence (4.8), for C(d) small enough. L

For later reference we state a property analogous to one established in
the proof of Proposition 4.2 and which follows directly from (2.14). Let C

be a contour and p a configuration which has C as a contour. Call D=
{x: dist(x, sp(C)=1}, then h(px) is constant on each one of the connected
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components of D, and we denote by Ei=± 1 such values. Then, supposing
CP so large that

1 − e−CP \ e−1, 1+ce−CP/4 [ e (4.9)

Z ({Ei}, p)
l, sp(C)(|asp(C) | > ag |C|) [ e−CP |C|+1Z ({Ei}, p)

l, sp(C)(|asp(C) | [ ag |C|) (4.10)

In fact, by (2.14),

Z ({Ei}, p)
l, sp(C)(|asp(C) | > ag |C|) [ e−CP |C|Z ({Ei}, p)

l, sp(C)

We then write

Z ({Ei}, p)
l, sp(C)=Z({Ei}, p)

l, sp(C)(|asp(C) | > ag |C|)+Z({Ei}, p)
l, sp(C)(|asp(C) | [ ag |C|)

and use (4.9) to get (4.10).
The proof of (4.1) for the fat contours is not as simple as for the slim

ones. An important point, see Proposition 4.4 below, is the analysis of the
empirical averages of ax in regions where only slim contours are present
and where the boundary conditions are in the minus phase. The setup is
described by the measures

m (−, p, s)
l, L (dq)=m (−, p)

l, L (dq | {all contours are slim}) (4.11)

To estimate the contribution of the perturbation lHI, we will prove that
aL is close to a− |L|, which is not a priori obvious because l > 0. After
establishing a Peierls bound on contours for the measure m (−, p, s)

l, L , we will
conclude that most of the space is made of sites x with G( · ; x)=−1 and
this will yield the desired result.

Lemma 4.3. Let L be a fat region and D ˘ L, |D| < t− (l)d. Then for
E0=± 1,

m (−, p, s)
l, L (dq | FD

c, {G(q; x)=E0, dist(x, D)=1})=m (E0, p)
l, D (dq) (4.12)

As a consequence if C is a slim contour with sp(C) ˘ L, then

m (−, p, s)
l, L (C; p)=ml(C; p) (4.13)

the r.h.s. having been defined in (3.2).

Proof. The measure on the l.h.s. of (4.12) is equal to

m (−, p)
l, L (dq | FD

c, {G(q; x)=E0, dist(x, D)=1}, {all contours of q are slim})(qŒ)
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Since G(q; x)=E0 for all x: dist(x, D)=1, the contours of q have spatial
support either contained entirely in D or entirely outside D. Since |D| <
t− (l)d, we can drop the condition that the contours whose spatial support
is in D are slim, because it is automatically satisfied, hence (4.12).

If C is a slim contour and sp(C) ˘ L, then V(C) ˘ L because L is fat
and (4.13) follows then from (4.12). Lemma 4.3 is proved. L

Proposition 4.4. There is c > 0 so that if 0 < l [ lg and L is a fat
region, then

m (−, p, s)
l, L (q: |aL(q) − a− |L|| > 2z |L|) [ ce−CP/4 (4.14)

m (+, p)
0, L (q: |aL(q) − a+ |L|| > 2z |L|) [ ce−CP/4 (4.15)

Proof. We start with (4.15). Since

{|aL − a+ |L|| > 2z |L|} ˘ 3 C
x ¥ L

|ax − a+| 1|ax − a+| > z > z |L|4 (4.16)

by the Chebishev inequality,

m (+, p)
0, L (q: |aL(q) − a+ |L|| > 2z |L|) [

1
z

sup
x ¥ L

m (+, p)
0, L (|ax − a+| 1|ax − a+| > z)

(4.17)

All q in the support of m (+, p)
0, L are such that

if |ax(q) − a+| > z then q has a contour C with x ¥ V(C) (4.18)

Then, supposing CP large enough, by Lemma 3.2

m (+, p)
0, L (q: |aL(q) − a+ |L|| > 2z |L|) [

(e−CP)1/2

z
sup
x ¥ L

m (+, p)
0, L (|ax − a+|2)1/2

(4.19)

(4.15) follows then from (4.19) by using (2.11).
Analogously we have

m (−, p, s)
l, L (q: |aL(q) − a− |L|| > 2z |L|) [

1
z

sup
x ¥ L

m (−, p, s)
l, L (|ax − a− | 1|ax − a− | > z)

(4.20)
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For any x on the r.h.s. of (4.20) there is a slim contour C such that
V(C) ¦ x. Then

m (−, p, s)
l, L (|ax − a− | 1|ax − a− | > z) [ C

C is slim
V(C) ¦ x

m (−, p, s)
l, L (|ax − a− | 1q Q C)

where q Q C means that C is a contour for q. By (4.12) we get

m (−, p, s)
l, L (|ax − a− | 1q Q C)=F m (−, p, s)

l, L (dq) m (E(C), q)
l, V(C) (|ax(qŒ) − a− | 1qŒ Q C)

Using (4.4), setting E(C)=± 1 if C is a ± contour, we then get

m (E(C), q)
l, V(C) (|ax(qŒ) − a− | 1qŒ Q C) [ e−(CP/4) |C|m (E(C), q)

l, V(C) (|ax − a− |)1/2

Using again (2.11), we conclude that if CP is large enough, then (4.14)
holds. Proposition 4.4 is proved. L

The Minus Layer Attached to a Plus Contour

Resuming the notation (4.5), we fix a fat+contour C0, (C0 because we
will use C as a current symbol for contours,+because we are proving (4.1)
with l > 0). We also suppose that int−(C0) is a fat region, in the other case
the proof of (4.1) is essentially the same as that of Proposition 4.2 and
omitted. Given a configuration q which has C0 as a contour, we select
inside int−(C0) the family (C1,..., Cn) of the fat, minus, ‘‘external’’ contours:
these are all the fat, minus contours C with sp(C) ˘ int−(C0) and which are
neither contained in any V(CŒ), CŒ a plus contour in int−(C0), nor in the
plus interior of any minus contour CŒ in int−(C0). Thus (C1,..., Cn) are all
the fat contours in the subset of int−(C0) obtained by erasing from the
latter all the regions which are surrounded by a circuit with G=1. We will
shorthand C

¯
=(C0, C1,..., Cn), with (C1,..., Cn) as above.

Thus C
¯

divides V(C0) into three regions:

int+(C
¯

)=e
i

int+(Ci), sp(C
¯

)=e
i

sp(Ci),

D−(C
¯

) :=V(C0)0{int+(C
¯

) c sp(C
¯

)}
(4.21)

The minus layer attached to the plus contour C0 is then defined as

L−(C
¯

)=V(C0)0 int+(C
¯

)=sp(C
¯

) c D−(C
¯

) (4.22)

Notice that |L−(C
¯

)| \ |C0 |.
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In the next theorem we will prove a bound on the volume of the minus
layer L−(C

¯
) which implies (4.1) and which will be crucial in the proof in

the next section that all tempered DLR measures are in G+
l , if l > 0 (and

in G−
l , if l < 0).

Theorem 4.5. Let C0 be a fat, plus contour and L− the random set
defined in (4.22), then for any V \ |C0 |,

m (+, p)
l, V(C0)(,C

¯
: |L−(C

¯
)| \ V) [ e−(CP/8) |C0| − wV

w=min 3CP

8
; l(ba

d)
a+ − a−

2
4 (4.23)

As a consequence

ml(C0; p) [ e−(CP/8) |C0| (4.24)

Proof. Note first that (4.24) is an obvious consequence of (4.23).
Thus we only need to prove the latter inequality.

With the obvious meaning of the symbols, we have

m (+, p)
l, V(C0)(|L−| \ V)=

Z (+, p)
l, V(C0)(|L−| \ V)

Z (+, p)
l, V(C0)

To bound the partition function in the numerator we start writing

Z (+, p)
l, V(C0)(|L−| \ V) [ C

C
¯

: |L−| \ V
Z (+, p)

l, V(C0)(q Q C
¯

)

Z (+, p)
l, V(C0)(q Q C

¯
)=F

{pŒ Q int+(C
¯

)}
nint+(C

¯
)(dpŒ) e−Hl(pŒ)Z (+, p, pŒ)

l, L
− (q Q C

¯
)

where {pŒ Q int+(C
¯

)} is the condition

h(pŒx)=1 for all x ¥ int+(C
¯

): dist(x, L−) [ 2

while {q Q C
¯

} in the last partition function is a shorthand for the condition
that the configuration equal to q in L−, to pŒ in int+(C

¯
) and to p outside

V(C0) gives rise to C
¯

.
The rest of the proof will only involve manipulations on

Z (+, p, pŒ)
l, L

− (q Q C
¯

). Calling

D−
0 ={x ¥ D− : dist(x, (D−)c) > 1}, sp(C

¯
)+=L− 0D−

0

1252 Bovier et al.



(recall that sp(C
¯

)=L− 0D−), we then have

Z (+, p, pŒ)
l, L

− (q Q C
¯

)=F
{h(qŒx)=hC

¯
}

nsp(C
¯

)+(dqŒ) e−Hl(qŒ | p, pŒ)Z (−, qŒ, s)
l, D

−
0

(4.25)

where {h(qŒx)=hC
¯

} is a shorthand for the condition that h(qŒx)=hCi
(x)

when x ¥ sp(Ci), i=0,..., n, and moreover that h(qŒx)=−1 when x ¥

sp(C
¯

)+0 sp(C
¯

) (which is the same as D− 0D−
0 ).

By (4.14)

Z (−, qŒ, s)
l, D−

0
[ (1 − ce−CP/4)−1 Z (−, qŒ, s)

l, D−
0

(|aD−
0

− a− |D−
0 || [ 2z |D−

0 |)

which, reinserted into (4.25), supposing CP so large that (1 − ce−CP/4)−1 [ e,
yields:

Z (+, p, pŒ)
l, L

− (q Q C
¯

) [ e F
3|a

D
−
0

− a− |D−
0 || [ 2z |D−

0 |,

h(qx)=−1, x ¥ D
−

0D−
0

4
nD

− (dqŒ) e−Hl(qŒ | p, pŒ)

× D
n

i=0
F
3h(qx)=hCi

(x),
x ¥ sp(Ci)

4
nsp(C

¯ i)
(dq) e−Hl(q | qŒ, p.pŒ) (4.26)

In each one of the integrals in the above product we distinguish whether
|asp(Cj) | > ag |Cj | or else the reverse inequality holds. When the former
occurs, we use (4.10) and write

F
h(qx)=hCj

(x), x ¥ sp(Cj)
nsp(Cj)(dq) e−Hl(q | qŒ, p, pŒ) 1|asp(Cj)| > ag |Cj |

[ e−CP |Cj |+1Z ({Ei}j, qŒ, p, pŒ)
l, sp(Cj) (|asp(Cj) | [ ag |Cj |)

where {Ei}j are the values of h on the boundaries of sp(Cj), which are fixed
by C

¯
.
Collecting the above inequalities and calling |CIc |, I ˘ {0,..., n}, the

sum of |Cj | over j ¥ {0,..., n}0I, we get from (4.26)

Z (+, p, pŒ)
l, L

− (q Q C
¯

) [ C
I ˘ {0,..., n}

e−CP |CIc|+n+1 Z (+, p, pŒ)
l, L

−

×13 : aD
−

|D−|
− a−

: [ 2z4 , 3 :asp Ci

|Ci |
: [ ag, -i4 , {q Q Ci, i ¥ I}2

having used that {h=−1 on D− 0D−
0 } implies that

|aD
−

0D−
0

− a− |D− 0D−
0 || [ z |D− 0D−

0 |
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We next change l into l=0 by exploiting the constraints in the last
partition function:

Z (+, p, pŒ)
l, L

− (q Q C
¯

) [ C
I ˘ {0,..., n}

e−CP |CIc|+l(ba
d)(a− +2z) |L−|

× en+1+l(ba
d)[ − (a− +2z)+ag] |C

¯
|Z (+, p, pŒ)

0, L
− ({q Q Ci, i ¥ I})

(4.27)

and use the Peierls bound

Z (+, p, pŒ)
0, L

− ({q Q Ci, i ¥ I}) [ e−CP |CI|Z (+, p, pŒ)
0, L

−

We will next reconstruct a partition function with the correct value of l

and then conclude the proof of the theorem. By (4.15),

Z (+, p, pŒ)
0, L

− [ (1 − ce−CP/4)−1 Z (+, p, pŒ)
0, L

− (|aL
− − a+ |L−|| [ 2z |L−|)

and recalling CP is so large that (1 − ce−CP/4)−1 [ e,

Z (+, p, pŒ)
0, L

− [ e1 − l(ba
d)(a+ − 2z) |L−|Z (+, p, pŒ)

l, L
−

By the two inequalities above, (4.27) becomes

Z (+, p, pŒ)
l, L

− (q Q C
¯

) [ 2n+1e−CP |C
¯

| − l(ba
d)(a+ − a− − 4z) |L−|

× en+2+l(ba
d)[ − (a− +2z)+ag] |C

¯
|Z (+, p, pŒ)

l, L
−

with 2n+1 counting the cardinality of the subsets I in (4.27). By the choice
of z, see (2.5),

a+ − a− − 4z=
a+ − a−

2
+

a+ − a−

10

and by choosing properly the constant C(d) in Theorem 2.1,

3−
7CP

8
+d−1CPl[ − a− +ag]4 |C

¯
|+(n+2)+(n+1) log 2 [ −

CP

4
|C
¯

|

we finally get:

Z (+, p)
l, V(C0)(|L−| \ V)

Z (+, p)
l, V(C0)

[ e−CP |C0|/8 − wV C
C
¯

: |L−| \ V
e−CP |C

¯
|/4 − l(ba

d)(a+ − a− ) |L−|/10

(4.29)
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We will prove that

m̂l(C0; p) :=C
C
¯

e−CP |C
¯

|/4 − l(ba
d)(a+ − a− ) |L−|/10 [ 1 (4.30)

which will conclude the proof of the theorem.

A Counting Argument

The proof of (4.30) will use coarse graining with grains the cubes of
size t+(l) of a partition D (t+(l)) of Zd, where

t+(l)=t− (l)10 (4.31)

supposing for simplicity t+(l) ¥ N.
Call {Ĉx, x ¥ X}, X a label set, the cubes of D (t+(l)) with nonempty

intersection with V(C0), in the sequel we will restrict to such a set. Given C
¯

,
each Ĉx, x ¥ X, falls into one of the following three categories:

• Ĉx ˘ D−(C
¯

),
• Ĉx X sp(C

¯
) ] ”,

• Ĉx ˘ int+(C
¯

)

In fact the fourth possibility, namely Ĉx 0D−(C
¯

) ] ”, Ĉx 0 int+(C
¯

) ] ”

and Ĉx X sp(C
¯

)=”, is empty because of the definition of contours.
To distinguish the three cases we introduce the variable k(C

¯
; x),

x ¥ X, which has value −1, 0, and 1 respectively in the first, second and
third case above. For ease of reference we write it down explicitly:

k(C
¯

; x)=˛ − 1 if Ĉx ˘ D−(C
¯

)

0 if Ĉx X sp(C
¯

) ] ”

1 if Ĉx ˘ int+(C
¯

)

(4.32)

For each x ¥ X we introduce a weight wl(C
¯

; x) which is determined by the
value of k(C

¯
; x). We first call, for x ¥ X,

Ĉ+
x ={y: dist(y, Ĉx) [ t+(l)}, C

¯
x={Ci ¥ C

¯
: sp(Ci) X Ĉx ] ”}

(4.33)

and then define the weights

wl(C
¯

; x)=˛e−l(ba
d)[(a+ − a− )/10] t+(l)d

if k(C
¯

; x)=−1

e−3 − d(CP/4) |sp(C
¯ x) X C+

x | if k(C
¯

; x)=0

1 if k(C
¯

; x)=1

(4.34)
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The definition is such that

m̂l(C0; p) [ C
C
¯

D
x ¥ X

wl(C
¯

; x) (4.35)

The difficulty with (4.35) is that the weights wl( · ; x) for different x are not
independent, but, as we will see, we can reduce by upper bounds to the
independent case. Let

S=3 s ¥ {0, ± 1}X : sx=0 for Ĉx X sp(C0) ] ”, e
sx < 1

Ĉx is a connected4

(4.36)

Our goal is to define new weights wl(sx), x ¥ X, so that

m̂l(C0; p) [ C
s ¥ S

D
x ¥ X

wl(sx) (4.37)

Recalling (4.34) we set wl(1)=1 and

wl(−1)=e−l(ba
d)[(a+ − a− )/10] t+(l)d

(4.38)

To define wl(0), we denote by T
¯

=(T1,..., Tn) any finite sequence of
disjoint, a connected, D (1)-measurable sets and define, given a cube
Ĉ ¥ D (t+(l)),

wl(0)= C
T
¯

: Ti X Ĉ ] ”

|Ti| \ Ng

D
i

3 |Ti|e−3 − d(CP/4) |Ti| (4.39)

where

Ng=min{cdt− (l)d − 1; t+(l)} (4.40)

cd an isoperimetric constant.
We will prove (4.37) by showing that

C
C
¯

: k(C
¯

; x)=sx, x ¥ X
D

x ¥ X
wl(C

¯
; x) [ D

x ¥ X
wl(sx) (4.41)

Indeed the factors 3 |Ti| in (4.39) take into account that there at most
3 |Ti| contours C with sp(C)=Ti. Ng is a lower bound for the number of
sites of all sets sp(C) which are in Ĉ+

x , over all fat contours C such that
sp(C) X Ĉx ] ”: the first term is a lower bound for |C| and covers the case
when sp(C) ˘ Ĉ+

x (see (4.7) and (4.3)), the second one is for the case when
sp(C) is not contained in Ĉ+

x . With this choice (4.41) holds.
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We next need to bound the weights w( · ). For l̂ small enough Ng

becomes large too, and if CP is also large enough,

wl(0) [ e−3 − d(CP/8) Ng 11+ C
T ¦ 0, |T| \ Ng

3 |T|e−3 − d(CP/8) |T|2[t+(l)]d

[ 2e−3 − d(CP/8) Ng
(4.42)

where the last estimate is obtained in the same way as the bound 3.5.
Recalling (4.34), (4.31), and (4.2)

wl(−1)=e−l(ba
d)[(a+ − a− )/10] t+(l)d

, lt+(l)d=l1 − 5d (4.43)

Thus by choosing lg small enough, also wl(−1) can be made as small as
desired, and consequently we can achieve that m̂l(C0; p) < 1 and (4.1) is
proved.

5. UNIQUENESS OF THE PLUS AND MINUS PHASES

In this section we will prove that when 0 < l [ lg any tempered DLR
measure m is in G+

l , the proof of the analogous statement for l < 0 is
omitted. The idea of the proof is similar to that in refs. 1 and 8.

Let L0 be a cube of side L and LŒ the cube with same center and side
L/2. Given a configuration q, let G=G(q) be the union of the maximal
connected components of {x: G(q; x) < 1} which have intersection with Lc

0.
Call

G+={x: dist(x, G) [ 1}, D=(G+)c X L0 (5.1)

Given any bounded, local function f, we consider below L so large that
f=f(qLŒ) (i.e., it only depends on qLŒ ). We then have

F m(dq) f(q)= C
D ^˙ LŒ

F m(dq) f(q) 1D(q)=D

+ C
D ˙ LŒ

F m(dp) F m (+, p)
l, D (dqLŒ) f(qLŒ) 1D(p)=D

Recalling that the dependence of L, D, LŒ on L is not made explicit, we will
prove

lim
L Q .

m(D ^˙ LŒ)=0 (5.2)
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thus concluding that

F m(dq) f(q)= lim
L Q .

C
D ˙ LŒ

F mL(dp; D) F m (+, p)
l, D (dqLŒ) f(qLŒ)

mL(dp; D)=1 1D(p)=D

m(D ˙ LŒ)
2 m(dp), C

D ˙ LŒ

F mL(dp; D)=1

(5.3)

For any L the r.h.s. of (5.3) is the expectation of f w.r.t. a measure in
G+

l, LŒ, hence, by the arbitrariness of f, m ¥ G+
l .

In the remaining part of the section we will prove (5.2).

The Random Sets G−
k

It is convenient, at this point, to use the function h(qx) rather than the
phase indicator G(q; x), due to the local structure of the former. Recalling
(2.2),

{G < 1}={x: dist(x, {h < 1}) [ 1}

so that the maximal connected components of {G < 1} are obtained from
the maximal 3-connected components of {h < 1} (two sites x and y being
called 3-connected if |x − y| [ 3) by taking all sites which have distance [ 1
from the latter. As a consequence, defining G−=G−(q)={x ¥ G : h(qx)
< 1}, we recover G from G− by setting G={x: dist(x, G−) [ 1}; moreover,
the part of G− contained in a maximal connected component of G is a
3-connected set and distinct 3-connected components of G− belong to dis-
tinct connected components of G. G− can be defined directly as the union
of all the maximal 3-connected components of {x: h(qx) < 1} which have
distance [ 1 from Lc

0.
We will next approximate the set G− by sets G−

k . For k \ 1, let

Lk=Lk − 1 0{x: dist(x, Lc
k − 1) [ 3} (5.4)

and define G−
k as equal to the union of all the maximal 3-connected com-

ponents of {x ¥ Lc
k : h(qx) < 1} which have distance [ 1 from Lc

0. We call
M−

k =G−
k X (Lk − 1 0Lk). Since M−

k =” implies that h(qx)=1 for all
1 [ dist(x, G−

k ) [ 3, it then follows that G−=G−
k . Thus G− ˘ Lc

k − 1 and
consequently G ˘ Lc

k, so that

(5.2) is implied by lim
L Q .

m({there is k: M−
k =”, Lk ˙ LŒ})=1 (5.5)
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The Random Times sj

We will prove (5.5) by successive approximations, first showing that
|M−

k | cannot be too large, too often. Call

a(j)=d − 1 − j+
j

2d
, j=1,..., d (5.6)

and, setting s0=0, define the ‘‘random times’’ sj, j=1,..., d, as

sj=˛min{k: |M−
k | [ La(j)}, if the set is nonempty

+. otherwise
(5.7)

Since a(j) is decreasing, sj \ sj − 1, j=1,..., d. Moreover we can read off
from G−

k (q) which are the values of sj which are not larger than k, if any.
Thus there exists a family of sets K0

j, k so that

{sj=k} Z {G−
k ¥ K0

j, k} (5.8)

For L sufficiently large, if sd < . then sd=min{k \ sd − 1 : M−
k =”}.

Thus, by choosing a suitably small constant b, we conclude that in the set
{sj+1 − sj [ bL, j < d}, Lsd

˙ LŒ and, for L large enough, M−
sd

=”. Recall-
ing (5.5), the statement we want to prove, namely that m ¥ G+

l , then follows
from

lim
L Q .

m({sj+1 − sj > bL} X {sj [ jbL})=0, j=0,..., d − 1 (5.9)

We shorthand

{|q|D [ Ld}={q: |qx | [ Ld, for all x ¥ D}, d > 0, D ˘ Zd (5.10)

Since m is tempered, for any d > 0,

lim
L Q .

m({|q|L0
[ Ld})=1 (5.11)

In fact

m({|q|L0
> Ld}) [ Ld sup

x ¥ L0

m(|qx | > Ld))

and then (5.11) follows from (2.12), with n large enough.
By (5.11), we can replace the condition (5.9) by

lim
L Q .

m({sj+1 − sj > bL} X {sj [ jbL} X {|q|L0
[ Ld})=0, j=0,..., d − 1

(5.12)
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or, for the generic j ¥ {0,..., d − 1} and with K0
j, k defined in (5.8),

lim
L Q .

C
k [ jbL

C
G−

k ¥ K0
j, k

m({sj+1 − sj > bL} X {G−
k (q)=G−

k } X {|q|L0
[ Ld})=0

(5.13)

The Set Bk

We will next suitably modify the set {sj+1 − sj > bL}. Let Bk be the
union of all the maximal connected components of

{x: h(qx) < 1} X {x: dist(x, G−
k ) > 3)}

which have nonempty intersection with {y: dist(y, M−
k ) [ 6}.

The set G−
h , h > k, contains G−

k , and the sites x ¥ G−
h 0G−

k , dist(x, G−
k )

[ 3, have distance [ 3 from M−
k ; hence

{x ¥ G−
h 0G−

k : dist(x, M−
k ) > 3} ˘ Bk (5.14)

Since

G−
h 0G−

k ˙ e
k [ hŒ [ h

MhŒ

then, in the set {q: sj+1(q) − sj(q) > bL; G−
k (q)=G−

k }, G−
k ¥ K0

j, k,

|G−
h 0G−

k | \ bL1+a(j+1), h \ k+bL

and by (5.14)

|Bk | \ bL1+a(j+1) − 50d |M−
k |

On the other hand |M−
k | [ La(j) and a(j+1)+1 − a(j)=1/(2d) > 0, so

that, for L large enough,

|Bk | \
b
2

L1+a(j+1) (5.15)

Thus, instead of (5.13) we may prove as well that, for any j ¥

{0,..., d − 1},

lim
L Q .

C
k [ jbL

C
G−

k ¥ K0
j, k

m 1{G−
k (q)=G−

k } X {|q|L0
[ Ld} X 3 |Bk | \

b
2

L1+a(j+1)42=0

(5.16)
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Let G−
k ¥ K0

j, k in the sequel and call

Dk={x ¥ L0 : dist(x, G−
k ) \ 3}, “Dk={x ¥ Dk : dist(x, G−

k )=3}
(5.17)

When G−
k (q)=G−

k , then h(qx)=1 for all x ¥ “Dk X Lc
k; thus

{G−
k (q)=G−

k }=Kj, k X {h(qx)=1, x ¥ “Dk X Lc
k} (5.18)

where

Kj, k={h(qx) < 1, x ¥ G−
k } X {h(qx)=1, x ¥ Lc

k, dist(x, G−
k ) ¥ {1, 2}}

(5.19)

so that Kj, k ¥ FD
c
k X L

c
k
. We then have

m 1{G−
k (q)=G−

k } X {|q|L0
[ Ld} X 3 |Bk | \

b
2

L1+a(j+1)42

=F
Kj, k X {|qŒ|L0 0Dk

[ Ld}
m(dqŒ) m (qŒ)

l, Dk
1{h(qx)=1, x ¥ “Dk X Lc

k}

X {|q|Dk
[ Ld} X 3 |Bk | \

b
2

L1+a(j+1)42 (5.20)

To bound the last term on the r.h.s. of (5.20), we write it as a fraction of
two partition functions:

m (qŒ)
l, Dk

1h=1 on “Dk X Lc
k; |q|Dk

[ Ld; |Bk | \
b
2

L1+a(j+1)2=
N (qŒ)

l, Dk

Z (qŒ)
l, Dk

(5.21)

where

N (qŒ)
l, Dk

=Z(qŒ)
l, Dk

1h=1 on “Dk X Lc
k; |q|Dk

[ Ld; |Bk | \
b
2

L1+a(j+1)2

Reduction to + Boundary Conditions

By using (2.15) we will replace N (qŒ)
l, Dk

by a new partition function with
+ boundary conditions. Calling boundary sites, the sites x ¥ Dc

k: dist(x, Dk)
[ 2, we want to change qŒ at all the boundary sites where h < 1 and also to
impose that h=1 on the whole “Dk and not only on “Dk X Lc

k, as in the
constraint of the partition function defining N (qŒ)

l, Dk
. The whole thing works

because the overall number of sites in this operation is ‘‘small,’’ as we are
going to see.
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The boundary sites have distance equal to 1 or to 2 from G−
k , hence,

by the definition of G−
k , h=1 on all such sites which are not in Lk. Thus

the new b.c. qŒ
+ is defined in such a way that q −+

x =q −

x for all x ¨ Ak,
Ak={y ¥ Dc

k X Lk : dist(y, Dk) [ 2}; while h(q −+
x )=1 for all x ¥ Ak. Since

|“Dk X Lk | [ 50d |M−
k |, by (2.15),

N (qŒ)
l, Dk

[ ec(ba
d) 50d |M−

k | Ldn
Z (qŒ

+)
l, Dk

1h=1 on “Dk; |Bk | \
b
2

L1+a(j+1)2 (5.22)

where on the r.h.s. we have dropped the condition |q|Dk
[ Ld. The r.h.s. is

a+partition function in the sense of (2.8) and we have

Z (qŒ
+)

l, Dk
(h=1 on “Dk; |Bk | \ b

2 L1+a(j+1))

Z (qŒ
+)

l, Dk
(h=1 on “Dk)

=m (+, qŒ
+)

l, Dk
1 |Bk | \

b
2

L1+a(j+1)2

(5.23)

The r.h.s. will give the small factor which makes the sum in (5.16) con-
vergent and infinitesimal with L, but let us first readjust the partition func-
tion in the denominator of the fraction on the l.h.s. of (5.23):

Z (qŒ
+)

l, Dk
(h=1 on “Dk)

Z (qŒ
+)

l, Dk
(h=1 on “Dk, |q|Dk

[ Ld)
[ (1 − Ld sup

x ¥ Dk

m (+, qŒ
+)

l, Dk
(|qx | > Ld))−1

By (2.12), for L large enough, the last factor is smaller than 2 and, using
again (2.15), we get

Z (qŒ
+)

l, Dk
(h=1 on “Dk) [ 2ec(ba

d) 50d |M−
k | Ldn

Z (qŒ)
l, Dk

(h=1 on “Dk, |q|Dk
[ Ld)

(5.24)

hence, going back to (5.20) and with cŒ a suitable constant,

m 1{G−
k (q)=G−

k } X {|q|L0
[ Ld} X 3 |Bk | \

b
2

L1+a(j+1)42

[ ecŒ(ba
d) |M−

k | Ldn
F

Kj, k X {|q|L0 0Dk
[ Ld}

m(dqŒ) m (qŒ)
l, Dk

(h=1 on “Dk)

× m (+, qŒ
+)

l, Dk
1 |Bk | \

b
2

L1+a(j+1)2 (5.25)

The Probability that |Bk | \ b
2 L1+a( j+1)

By the definition of Bk, a maximal connected component of Bk is the
layer attached to a plus contour C whose spatial support has nonempty
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intersection with F :={y: dist(y, M−
k ) [ 6}. Let C

¯
=(C1,..., Cn) be the

collection of all such plus contours, then, by Theorem 4.5,

m (+, qŒ
+)

l, Dk
1 |Bk | \

b
2

L1+a(j+1)2

[ C
C
¯

=(C1,..., Cn)
sp(Ci) X F ] ”, 1 [ i [ n

e−b(Cp/8) |C
¯

| C
Vi, 1 [ i [ n

; i Vi \ b
2

L1+a(j+1)

D
i

e−wVi

[ e−w(b/4) L1+a(j+1)
C

C
¯

=(C1,..., Cn)
sp(Ci) X F ] ”, 1 [ i [ n

e−b(Cp/8) |C
¯

|[1 − e−w/2]−n

where we have used (4.23) for the fat contours in C
¯

and (4.4) for the slim
ones. The number n of contours cannot exceed |F| so that the above is
bounded by

e−w(b/4) L1+a(j+1)
[1 − e−w/2]−|F| D

x ¥ F

11+ C
C: sp(C) ¦ x

e−(Cp/8) |C|2

For CP as large as required by Lemma 3.1,

C
C: sp(C) ¦ x

e−b(Cp/8) |C| [ oe−CP/8

and since |F| [ c |Mk | [ cŒLa(j), we get

m (+, qŒ
+)

l, Dk
1 |Bk | \

b
2

L1+a(j+1)2

[ exp{ − w(b/4) L1+a(j+1)+cœLa(j)} [ exp{ − w(b/8) L1+a(j+1)}

for L large enough, because

a(j)=d − 1 − j+
j

2d
, 1+a(j+1)=d − 1 − j+

j+1
2d

Conclusions

To prove (5.13), we write

l.h.s. of (5.13)

[ lim
L Q .

C
k [ jbL

C
G−

k ¥ K0
j, k

exp{cŒ(ba
d) |M−

k | Ldn − w(b/8) L1+a(j+1)}

× F
Kj, k X |q|L0 0Dk

[ Ld
m(dqŒ) m (qŒ)

l, Dk
(h=1 on “Dk)
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By (5.7), |M−
k | [ La(j), and with such a bound, the first factor on the r.h.s.

becomes independent of k. Since

F
Kj, k X |q|L0 0Dk

[ Ld
m(dqŒ) m (qŒ)

l, Dk
(h=1 on “Dk) [ m({G−

k (q)=G−
k })

we have a sum of probabilities of disjoint events, hence

l.h.s. of (5.13) [ lim
L Q .

ecŒLa(j)(ba
d) Lnd − w(b/8) L1+a(j+1)

=0

if d is chosen small enough.

6. THE LMP MODEL

As an example of the possible applications of Theorem 2.1, we con-
sider the LMP model for phase transitions in the continuum. (9) Analogous
considerations apply to Ising systems with Kac potentials, as in refs. 2
and 4.

The LMP Model

As already mentioned in Section 2, the variable qx in the LMP model
is a particle configuration in the cell Cx, Cx being a cube of a partition
D (a+, c) of Rd which will be described later. |qx | denotes the number of par-
ticles in qx and |q| the total number of particles in the configuration q.

The LMP energy of a finite particle configuration q=(..., ri,...) is

Hc, l, b(q)=F
R

d
bel(jc f q) dr (6.1)

where, c > 0 is the Kac scaling parameter,

el(x)=−lx −
x2

2
+

x4

4!
(6.2)

jc f q(r)= C
ri ¥ q

jc(r, ri) (6.3)

with

jc(r, rŒ) :=cdj(cr, crŒ) (6.4)

and j(r, rŒ) a translational invariant, smooth, symmetric, probability kernel
supported by |r − rŒ| [ 1.

1264 Bovier et al.



In the language of Section 2,

ax(q)=
|q X Cx |

ba
d , a

d=|Cx |

while the chemical potential l above differs from l in Section 2 by an
additive constant, l Q l − lb, c, see the paragraph ‘‘Peierls estimates’’ below.

Mean Field

The mean field limit, formally corresponding to c=0, is described by
the free energy density

fl, b(x)=el(x) −
s(x)

b
(6.5)

where s( · ) is the entropy density

s(x)=−x(log x − 1) (6.6)

For b < bc=(3/2)3/2, f −−

l, b(x) > 0 for all l and x. For any b > bc

there is a unique value of l, l=lb, where flb, b has two distinct minimizers,
r±

b , elsewhere the minimizer is unique. Minimizers are solutions of the
mean field equation f −

l, b(x)=0 which can be written as

x=Kb(x) :=e−beŒlb
(x) (6.7)

It has three solutions: 0 < r−
b < r0

b < r+
b , and

f −−

lb, b(r±
b) > 0 (6.8)

There is b0 > bc so that

K −

b(r+
b ) ¥ (−1, 1) for all b ¥ (bc, b0)

while K −

b(r−
b ) ¥ (0, 1) for all b > bc. Following LMP we restrict to b ¥

(bc, b0).

Contours

Contours are defined using two scales,

a± , c=c−(1 ± E)

where E > 0 is a ‘‘very small’’ parameter. We then denote by D (a± , c) two
partitions of Rd into cubes of side a± , c, supposing D (1) finer than D (a− , c)
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finer than D (a+, c). Thus the cell length a of the previous sections is
a=a+, c=c−(1+E) in the present model.

We then define

g (z, a− , c)(q; r)=˛± 1 if |a−d
−, c |q X C (a− , c)

r | − rb, ± | [ z

0 otherwise
(6.9)

and, analogously to (2.2), denoting by Y the centers of all the cubes of
D (a− , c) contained in the cube of D (a+, c) labelled by Cx,

h(qx)= D
y ¥ Y

1g
(z, a − , c)(q; y)=1 − D

y ¥ Y
1g

(z, a − , c)(q; y)=−1

Peierls Estimates

Given b ¥ (bc, b0) there are c > 0, z > 0, E > 0, cg > 0, and lb, c, c [ cg,
so that the bound (2.9) holds for the Hamiltonian Hc, lb, c, b (which plays the
role of the energy H0 of Section 2) with

Cp=cz2
a

d
−, c (6.10)

with the contours defined using z > 0 and E > 0.

Stability Conditions

Denoting by Hc, l, b(q | qŒ) the energy of the configuration q in inter-
action with the configuration qŒ, there is a constant b=b(l, b) so that

Hc, l, b(q | qŒ) \ b |q| (6.11)

uniformly in c and qŒ. From such a strong property, the stability estimates
of Section 2 easily follow. Also the cut and paste condition (2.16) is easily
seen to hold with n=4.

Uniqueness Regime

By applying Theorem 2.1 we deduce that for c small enough, any DLR
measure (in the LMP model all DLR measures are stable) is in G sign of(l − lb, c)

for

0 < |l − lb, c | [ l̂ (6.12)

with l̂=ĉc2E. This complements the result in ref. 9 about coexistence of
phases at l=lb, c.

A more accurate analysis would show that G sign of(l − lb, c) consists of a
single element if l ] lb, c, while at the coexistence point, each G± has only
one element.
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An extension of the methods used in ref. 3 would allow to prove that
uniqueness extends to the region |l − lb, c | > l̂.
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